No One Should Die Of Cancer™

The 24th Annual Meeting of Japan Society of Gene and Cell Therapy, Tokyo July 26th-28th, 2018

A Cancer-Selective Gene Therapy Company
Forward-Looking Statements

This presentation contains forward-looking statements about Tocagen Inc. Words such as “believes,” “anticipates,” “plans,” “expects,” “indicates,” “will,” “should,” “intends,” “potential,” “suggests,” “assuming,” “designed” and similar expressions are intended to identify forward-looking statements. These statements are based on the Company’s current beliefs and expectations. These forward-looking statements include statements regarding: the success, cost, timing and potential indications of Tocagen’s product development activities and clinical trials, including ongoing clinical trials of Toca 511 & Toca FC; Tocagen’s ability to obtain and maintain regulatory approval of product candidates, including Toca 511 & Toca FC, in any of the indications for which it plans to develop them, and any related restrictions, limitations, and/or warnings in the label of an approved product candidate; Tocagen’s ability to obtain funding for its operations, including funding necessary to complete the clinical trials of any of our product candidates, including Toca 511 & Toca FC; Tocagen’s plans to research, develop and commercialize its product candidates, including Toca 511 & Toca FC; Tocagen’s ability to attract and retain collaborators with development, regulatory and commercialization expertise; and regulatory developments in the United States and foreign countries.

Actual results may differ materially from those expressed or implied in this presentation due to the risk and uncertainties inherent in the company’s business, including, without limitation, risks described in Tocagen’s filings with the Securities and Exchange Commission. You are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date hereof, and Tocagen undertakes no obligation to revise or update this presentation to reflect events or circumstances after the date hereof. Further information regarding these and other risks is included under the heading "Risk Factors" in Tocagen's most recent financial report filed with the Securities and Exchange Commission and its other reports, which are available from the SEC's website (www.sec.gov) and on Tocagen’s website under the heading "Investors." All forward-looking statements are qualified in their entirety by this cautionary statement. This caution is made under the safe harbor provisions of Section 21E of the Private Securities Litigation Reform Act of 1995.
Tocagen At-A-Glance

- **San Diego, California** biotechnology company with ~75 employees
- Founded in 2007 by **pioneers of gene therapy**
- Vision: **No One Should Die Of Cancer**
- Core technology is a differentiated **retroviral replicating vector (RRV) platform**
- Lead program in pivotal **Phase 3 trial** under **FDA Breakthrough Therapy Designation** and **EMA PRIME Designation**
Cancer-Selective Gene Therapy is in Our Name ... TO CAncer GENe

<table>
<thead>
<tr>
<th>EXECUTE</th>
<th>EXPAND</th>
<th>EXPLORE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| • BTD and PRIME designations in rHGG
• Accrual to Toca 5 Phase 3 study in rHGG
• Commercial launch planning in US | • Leverage Phase 1 data: CRs and survival
• Move Toca 511 & Toca FC to front-line HGG
• Advance opportunity in key geographies | • Achieve POC in other solid tumors with Toca 6
• Investigate new opportunities using RRV platform |
Technology Platform

技術プラットフォーム

Technology Platform
Retroviral Replicating Vector (RRV) Gene Therapy Platform
Selective Infection, Spread and Persistence in Cancer Cells

RRVs Infect Immune Deficient Cancer Cells But Not Normal Cells With Intact Immune Systems

Brain tumor with RRV stained brown (infected)

Normal brain cells not stained brown (uninfected)

Cancer cell interferon pathway genetic defects reduce anti-retroviral resistance

Does Not Initially Activate Immune System, Enabling Viral Spread

Non-lytic RRV budding from infected cell
Non-Lytic Virus Infects and Persists Selectively in Cancer Cells

RRV Platform Can Deliver a Variety of Therapeutic Genes

- Cytosine deaminase (Toca 511) with prodrug (Toca FC)
 Thymidine kinase
 Purine nucleoside phosphorylase
- scFv ab
 αPD-L1 (Toca 521)
- Immune Agonists
 OX40L
- siRNA
 Anti-PD-L1
- Cytokines
 IL-2
 IL-12
 IL-15
- Gene Combos
 GMCSF + cytosine deaminase

RRVプラットフォームを用いて様々な治療遺伝子を癌細胞へ導入可能
非溶解性ウイルスは癌細胞特異的に持続感染する
Lead Program
Toca 511 & Toca FC
Toca 511 (vocimagene amiretrorepvec) and Toca FC (extended-release 5-FC)

Long Terminal Repeat → Structural RRV genes gag pol, env → IRES-CD gene → Long Terminal Repeat

Optimized CD (cytosine deaminase)

5-FC antifungal prodrug → 5-FU anticancer drug
Toca 511 & Toca FCにより癌細胞内で持続的に高濃度5-FUの発生

Toca 511 & 5-FC Yields Sustained High Levels of 5-FU in Tumors

Designed to increase efficacy and minimize side-effects to improve outcomes

<table>
<thead>
<tr>
<th>Setting</th>
<th>Treatment</th>
<th>Tumor 5-FU (µg/g)</th>
<th>Plasma 5-FU (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat F98 glioma¹</td>
<td>Toca 511 & 5-FC</td>
<td>69</td>
<td>0.4</td>
</tr>
<tr>
<td>Human CRC²</td>
<td>IV 5-FU</td>
<td>0.1-2.8</td>
<td>52</td>
</tr>
</tbody>
</table>

¹ Data on file

Reversed 5-FU from blood to tumor

- Toca 511 & 5-FC generates 100 fold IC 50 level of 5-FU in the tumor
- Toca 511 and 5-FC does not generate clinically relevant 5-FU in the blood
- 5-FU produced in tumor microenvironment has a very short half-life in blood
Lead Program - Toca 511 & Toca FC
Immune Activation Via the Tumor Microenvironment

1. Gamma retrovirus Toca 511 selectively infects tumor, persists and spreads through tumor while delivering the CD gene

2. Toca FC prodrug locally converted to 5-FU chemotherapeutic within the tumor, killing cancer cells and resulting in activation of antigen presenting cells and T cell priming

3. 5-FU also eliminates immunosuppressive myeloid cells (MDSCs and TAMs), activating antitumor immunity
Locally, within tumor microenvironment, Toca 511 & Toca FC alter immune profile

- Increased T cell immune infiltrates in tumor (COLD → HOT)
- Immune effects are CD4 & CD8 T cell-dependent and correlate with immune-suppressive myeloid cells depletion

Pre-Clinical Evidence of Durable Immune Activation

CONTROL

IMMUNE DEFICIENT

IMMUNE COMPETENT

“Cured” Mice Reject Re-Challenge of Same Tumor in Flank

T Cells From “Cured” Mice Increase Survival in Adoptive Transfer Model

Adapted from Hirooka et al., Neuro-Oncol. 2017.

Increase in immune activating lymphoid cells

Tumour cells |

<table>
<thead>
<tr>
<th>PBS</th>
<th>5-FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>B cells</td>
<td>*p < 0.0001</td>
</tr>
<tr>
<td>CD4+ T helper</td>
<td>*p = 0.0005</td>
</tr>
<tr>
<td>CD8+ CTL</td>
<td>*p < 0.0001</td>
</tr>
<tr>
<td>Foxp3+ Treg</td>
<td>NS</td>
</tr>
</tbody>
</table>

% positive of total lymphocytes in tumor

Decrease in immune suppressive myeloid cells

| TAM: tumor associated macrophages; MDSC: myeloid derived suppressor cells |

<table>
<thead>
<tr>
<th>PBS</th>
<th>5-FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>% positive of total live lymphocytes</td>
<td></td>
</tr>
<tr>
<td>TAM</td>
<td>*p = 0.009</td>
</tr>
<tr>
<td>MDSC</td>
<td>*p = 0.016</td>
</tr>
<tr>
<td>monocytes</td>
<td>*p = 0.022</td>
</tr>
</tbody>
</table>

Mitchell et al. Neuro-Oncology, 2017

T-regs not significantly impacted
Clinical Development
Recurrent High Grade Glioma
Recurrent High Grade Glioma (rHGG)

Newly diagnosed GBM

- Standard of care includes surgery, radiation, temozolomide
- mOS from initial diagnosis to death ~16 months
- Limited treatment options

Recurrent GBM or AA

- Recurrence by MRI

Approved drugs and or trials (e.g. Toca 5)

Hospice

Recurrent HGG

- Treatments include bevacizumab, lomustine, carmustine wafer
- Similar mOS for surgical and non-surgical studies (pooled study analyses reported by Clarke Neuro-Oncol 2011 and Gorlia EJC 2012).
- NCCN guidelines recommend consideration of clinical trials
RESECTION
Injection into cavity wall after tumor debulking
n=56

INTRATUMORAL
Direct injection into the brain tumor
n=54

INTRAVENTRICULAR
Injection IV prior to resection and into cavity wall at resection
n=17

Resection Study – Data Highlights*

• Favorable safety profile
• Increased survival vs historic benchmarks
• 6 durable CRs – all remain alive (up to 4.8 years and counting)
• Phase 1 patients at Toca 5 dose and entry criteria^:
 – 5/23 CRs
 – 43.5% clinical benefit rate
 – mOS of 14.4 months
 – 26.1% survival at 3 years

*Efficacy evaluable patients (n=53). ^ n=23. Data cutoff 20Dec2017
Phase 1 Resection Study – Patients had Advanced Disease

<table>
<thead>
<tr>
<th>Population</th>
<th>All Patients N=56</th>
<th>Toca 5 Dose and Entry Criteria Subset N=23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Age (range)</td>
<td>56 (24-75)</td>
<td>55 (24-70)</td>
</tr>
<tr>
<td>Male</td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>43 (77)</td>
<td>20 (87)</td>
<td></td>
</tr>
<tr>
<td>Karnofsky Performance Score</td>
<td>17 (30)</td>
<td>5 (22)</td>
</tr>
<tr>
<td>70-80</td>
<td>39 (70)</td>
<td>18 (78)</td>
</tr>
<tr>
<td>90-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Tumor Histology</td>
<td>46 (82)</td>
<td>19 (83)</td>
</tr>
<tr>
<td>GBM</td>
<td>6 (11)</td>
<td>4 (17)</td>
</tr>
<tr>
<td>Anaplastic Astrocytoma</td>
<td>4 (7)</td>
<td>N/A</td>
</tr>
<tr>
<td>Other gliomas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Recurrences Including Current</td>
<td>28 (50)</td>
<td>19 (83)</td>
</tr>
<tr>
<td>1</td>
<td>13 (23)</td>
<td>4 (17)</td>
</tr>
<tr>
<td>2</td>
<td>15(27)</td>
<td>N/A</td>
</tr>
<tr>
<td>≥ 3 or greater</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Treatment-Related AEs

<table>
<thead>
<tr>
<th>Treatment-Related AEs</th>
<th>Toca 511 & Toca FC N=127</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1/2</td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
</tr>
<tr>
<td>Any treatment-related event</td>
<td>62 (48.8)</td>
</tr>
<tr>
<td>Treatment-related event ≥5% patients</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>37 (29.1)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>17 (13.3)</td>
</tr>
<tr>
<td>Nausea</td>
<td>14 (11.0)</td>
</tr>
<tr>
<td>Headache</td>
<td>8 (6.2)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>7 (5.5)</td>
</tr>
</tbody>
</table>

Treatment-Related SAEs

<table>
<thead>
<tr>
<th>Treatment-Related SAEs</th>
<th>Toca 511 & Toca FC N=127</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1/2</td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
</tr>
<tr>
<td>Any treatment-related event</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Treatment-related event ≥1% patients</td>
<td></td>
</tr>
<tr>
<td>Vasogenic cerebral oedema<sup>1</sup></td>
<td>0</td>
</tr>
</tbody>
</table>

¹ Both SAEs were Grade 3; no Grade 4 SAE

AE leading to death

<table>
<thead>
<tr>
<th>AE leading to death</th>
<th>Toca 511 & Toca FC N=127</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
</tr>
<tr>
<td>Any AE leading to death</td>
<td>3 (2.4)</td>
</tr>
<tr>
<td>Brain herniation</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Intracranial tumor hemorrhage</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>1 (<1)</td>
</tr>
</tbody>
</table>

Data cutoff 04Jan2018; excludes data from continuation study.

Toca 511 と Toca FCに関連する有害事象, 3つの第I相治験から集積したデータ

Adverse Events Related to Toca 511 and Toca FC

Data Pooled Across Three Phase 1 Studies

Low Incidence of Grade 3/4 Treatment-Related AEs

<table>
<thead>
<tr>
<th>Treatment-Related AEs</th>
<th>Toca 511 & Toca FC N=127</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1/2</td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
</tr>
<tr>
<td>Any treatment-related event</td>
<td>62 (48.8)</td>
</tr>
<tr>
<td>Treatment-related event ≥5% patients</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>37 (29.1)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>17 (13.3)</td>
</tr>
<tr>
<td>Nausea</td>
<td>14 (11.0)</td>
</tr>
<tr>
<td>Headache</td>
<td>8 (6.2)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>7 (5.5)</td>
</tr>
</tbody>
</table>

Low Incidence of Treatment-Related SAEs

<table>
<thead>
<tr>
<th>Treatment-Related SAEs</th>
<th>Toca 511 & Toca FC N=127</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1/2</td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
</tr>
<tr>
<td>Any treatment-related event</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Treatment-related event ≥1% patients</td>
<td></td>
</tr>
<tr>
<td>Vasogenic cerebral oedema<sup>1</sup></td>
<td>0</td>
</tr>
</tbody>
</table>

¹ Both SAEs were Grade 3; no Grade 4 SAE

AE leading to death

<table>
<thead>
<tr>
<th>AE leading to death</th>
<th>Toca 511 & Toca FC N=127</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
</tr>
<tr>
<td>Any AE leading to death</td>
<td>3 (2.4)</td>
</tr>
<tr>
<td>Brain herniation</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Intracranial tumor hemorrhage</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>1 (<1)</td>
</tr>
</tbody>
</table>
No evidence of clonal expansion or preferential integration near genes linked to cancer initiation.
<table>
<thead>
<tr>
<th>Population</th>
<th>Toca 511 & Toca FC Resection Study Median Overall Survival Months¹</th>
<th>Historical Data in Recurrent Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent High Grade Glioma</td>
<td>12.4 (n=43)</td>
<td>7.2 (n=110)²</td>
</tr>
<tr>
<td>Recurrent High Grade Glioma and higher doses</td>
<td>13.2 (n=30)</td>
<td>7.2 (n=110)²</td>
</tr>
<tr>
<td>Higher doses and Toca 5 entry criteria³</td>
<td>14.4 (n=23)</td>
<td>8.5 (n=437)⁴</td>
</tr>
<tr>
<td>Glioblastoma at 1ˢᵗ or 2ⁿᵈ recurrence</td>
<td>13.6 (n=27)</td>
<td>7.1 (n=84)⁵</td>
</tr>
</tbody>
</table>

¹ Data cutoff date August 15ᵗʰ 2017
² Carmustine wafer. Brem et. al., Lancet 345: 1008-1012, 1995
³ Higher doses (cohorts 4-7a) and 1ˢᵗ and 2ⁿᵈ recurrence, no prior Avastin in rHGG, tumor not > 5cm
⁴ Estimate based on weighted average of lomustine (Batchelor 2013, Taal 2014, Wick 2010, EORTC 2610185: n=352) and Avastin historical controls (n=85) and assumed percentage of enrollment
⁵ Wick 2010
Phase 1 Resection Study:
All 6 Responders Received Higher Toca 511 Dose and are Durable Complete Responders

<table>
<thead>
<tr>
<th>Response Category</th>
<th>All Efficacy Evaluable Patients N=53<sup>2</sup></th>
<th>Higher Doses and Toca 5 Entry Criteria Subset N=23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durable response rate (CR or PR ≥ 24 weeks), n (%)</td>
<td>6 (11.3); All CRs</td>
<td>5 (21.7); All CRs</td>
</tr>
<tr>
<td>Median duration of durable response</td>
<td>Not reached (median follow-up 36.5 mos)</td>
<td>Not reached (median follow-up 37.4 mos)</td>
</tr>
<tr>
<td>Stable disease, n (%)</td>
<td>12 (22.6)</td>
<td>5 (21.7)</td>
</tr>
<tr>
<td>Progressive disease, n (%)</td>
<td>35 (66.0)</td>
<td>13 (56.6)</td>
</tr>
<tr>
<td>Clinical Benefit Rate, n (%) (CR, PR, and SD ≥ 8 wks)</td>
<td>16 (30.2)</td>
<td>10 (43.5)</td>
</tr>
</tbody>
</table>

1. Includes MRI by independent radiology review and clinical data. Data cutoff date 20Dec2017.
2. Of 56 safety evaluable patients, 53 patients who received Toca 511 & Toca FC are efficacy evaluable and of these 2 were not evaluable for response. Includes 4 IDH wildtype and 2 IDH mutant patients. All 6 responders were in the higher dose cohorts and include 1 patient who received the Toca regimen in combination with bevacizumab.
3. Higher doses (cohorts 4-7a) and meet Toca 5 entry criteria of 1st and 2nd recurrence, no prior bevacizumab in rAA or rGBM, tumor not > 5cm.

response duration compares favorably:
- Bev ~4.2 mos
- Lomustine ~6.2 mos

Wick, JCO 2010; Avastin PI
Phase 1 Resection Study:
Long-Term Survival in Higher Dose Cohort

All Responses are Durable Complete Responses & Associated with Long Term Survival

- mOS Toca 511 & Toca FC = 14.4 months
- Responses occurred gradually over time ~ 6-19 months, consistent with immunologic response
- All Responders alive 3.2+ years to 4.8+ years, so far
- CRs received no additional brain cancer treatment after entering trial
- Each CR occurred in a different clinical site and all are confirmed by IRR
- Median DoR not reached with median follow up of 37.4 months

Toca 511-11-01 Overall Survival and the Best Response
1\(^{st}/2^{nd}\) Recurrence, No prior bevacizumab, <=5cm, Higher Dose Cohorts (N=23)

Data as of 20Dec2017
Final Results from Phase I Study of Toca 511 & Toca FC in rHGG

Extended survival in patients who meet dose/eligibility criteria for Phase 3 Toca 5 Trial

Proportion of Long-Term Survivors Consistent With Other IO Therapies

- Median follow-up of 47.8 months
- Median survival 14.4 months
- 3-year survival rate 26%

Cloughesy et al. JSGCT, 2018
Data cut off 20 Dec 2017
Complete Response in a Patient with Progressive GBM, IDH1 wt

Alive with CR > 38 months

CR by independent Radiology Review, Macdonald criteria
Toca FC cycle is every 6 weeks

Global Toca 5 Pivotal Phase 3 Trial Ongoing

Primary Endpoint: Overall Survival
Secondary Endpoints Include Durable Response Rate

Eligibility
- GBM or AA
- First and 2nd recurrence
- Tumor ≤ 5cm

Surgery And Randomization N=380

Administered at time of surgery

Chemotherapy** (lomustine or temozolomide) or bevacizumab

* Begins 6 weeks post-surgery

ClinicalTrials.gov Identifier: NCT02414165

Patients: 380

Primary endpoint: Overall Survival

MOA- Driven exploratory endpoint:
Durable Response Rate (PR/CR ≥ 24 weeks)

HR, Power: 0.685, 85%

Analyses for survival:
1st Interim at 50% events (2H 2018)
2nd Interim at 75% events (1H, 2019)
Final analysis at 257 events

Treatment effect versus SoC (months):
4.5 months (14.3 vs 9.8)

Biomarker monitoring includes blood (lymphocytes, immune activation markers, cytokines) and tumor (TILs and immune-suppressive myeloid cells)
Expanding to realize potential of Toca 511 & Toca FC
Newly Diagnosed HGG Opportunity

- Toca 511 injection at time of regular surgical resection
- Standard resection recovery time allows for viral spread
- Potential amplification of effect of temozolomide + radiation

Toca 511 & Toca FC Potential “Fit” with SOC for Newly Diagnosed HGG

- Newly diagnosed GBM
 - ~ 8 months
 - Brain tumor by MRI
 - Stupp Regimen: Surgery, radiation, temozolomide
- Recurrent GBM or AA
 - ~ 8 months
 - Recurrence by MRI
 - Approved drugs and or trials (e.g. Toca 5)
- Hospice

Pre-clinical data demonstrate Toca regimen synergistic with chemo and radiation

** Combination with radiation**
- PBS
- Radiation + PBS
- 5-FC
- Radiation + 5-FC
- RRV-CD
- 5FC
- Radiation

** Combination with chemotherapy**
- Toca 511 + PBS
- Toca 511 + 5FC
- NaCl + 5FC + TMZ
- Toca 511 + 5FC + TMZ

Toca 511 & Toca FC - Development and Regulatory Status

<table>
<thead>
<tr>
<th>Geography</th>
<th>Status</th>
</tr>
</thead>
</table>
| 🇺🇸 US | • Breakthrough Therapy Designation
• Orphan and Fast Track designations
• Commercial readiness planning underway |
| 🇪🇺 EU | • PRIME and Orphan Designations
• Rapporteur assigned, pursuing scientific advice
• Toca 5 OS endpoint in line with EMA preference |
| 🇨🇳 China | • Licensed to ApolloBio (Beijing)
• Collaboration aims to reduce drug lag in China
• Leverages recent major reforms with C-FDA |
| 🇰🇷 Korea | • Rapid trial approval with Korea FDA
• Participating in Toca 5 Phase 3 trial |
| 🇯🇵 Japan | • Pre-IND meetings held with PMDA
• Exploring partnering opportunities |
探求: パイプラインを推進するプラットフォーム技術

Exploring platform driving our pipeline
Toca 511 & Toca FC: Preclinical Efficacy is Supported Across a Range of Solid Tumors

Complementary MOA and Favorable Safety Supports Combinations

- Brain cancer
- Colorectal cancer
- Pancreatic cancer
- Breast cancer
- Bladder cancer
- Prostate cancer
- Ovarian cancer

NOTE: The images above are from clinical samples

Combination with CPI’s

Mitchell et al., SITC. 2017.
IV Toca 511 Results in Expression of CD Protein in Patient Tumors

Toca 511 静脈内投与後、患者の腫瘍内にCDタンパク発現を確認

- DAPI: Nuclear stain
- Cytosine Deaminase: Target protein encoded by Toca 511
- gag: 1 of 3 major proteins encoded by the retroviral genome
- Merge: gag protein localizes with cytosine deaminase expression after IV delivery of Toca 511

Walbert et al. Society of Neuro-Oncology Conference, 2017
Ongoing Phase 1b Trial in Advanced Solid Tumors

Design
- Phase 1b, multicenter, open label
- Patients with advanced solid tumors or lymphoma
- Patients qualified based on presence of specific molecular characteristics and specific tumor types

Preliminary Results (AACR, 2018)
- Favorable safety and tolerability
- Confirmed vector deposition in tumors

Next Steps
- Continue to evaluate safety, vector deposition, and immune activity changes
- Plan efficacy studies in additional tumor types

Toca 6 Trial – Study Schema

Baseline tumor immune testing* + Vector deposition in tumor

Biopsy/resection + intratumoral Toca 511 injection (≤ 4 mL, 1.3 x 10⁷ TU)

Follow-up tumor immune testing*

Biopsy/resection of previously biopsied tumor

Screening

Days 1, 2, & 3

Week 2

Weeks 5 & 6

Weeks 9-10

Weeks 10-13

Toca 511 IV 1x/day [14 mL/day (4.6 x 10⁷ TU)]

Toca FC (120 mg/kg/day x 5 days)

Toca FC [120 mg/kg/day x 7 days]

Toca FC q 4-6 weeks [120 mg/kg/day x 7 doses]

*Infiltrating T-cell subpopulations, B cells, monocytes.
†Effector, memory, Treg, myeloid lineage cells.

Imaging
Peripheral blood immune monitoring*

Based on preclinical data, concomitant checkpoint inhibitor® or other anticancer therapy may be initiated for clinical progression.
Toca 521: PD-L1を癌細胞内で標的化する癌特異的遺伝子治療
Toca 521: Cancer Selective Gene Therapy Targeting PD-L1 From Within

- Toca 521 (RRVscFv-PD-L1) selectively infects cancer cells and spreads through tumor
- Reprograms cancer cells to express scFv-PD-L1
- Secreted scFv-PD-L1 blocks PD-L1 on:
 - infected cell
 - neighboring cells in TME
- Pre-clinical immune-mediated robust and durable anti-tumor activity superior to monoclonal antibodies inhibiting PD-1/ PD-L1
- Autoimmunity not expected

Toca 521 Inhibits Tumor Growth and Elicits Immune Memory Function in Tu-2449SC Mouse Model

Lin et al. ASGCT, 2018
Summary
<table>
<thead>
<tr>
<th>Candidate</th>
<th>Indication</th>
<th>Discovery</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toca 511 & Toca FC</td>
<td>Recurrent high grade glioma</td>
<td>Toca 5</td>
<td>1st and 2nd interim analyses anticipated 2H 2018 and 1H 2019, respectively</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced solid tumors (CRC, Melanoma, Pancreatic, Lung & Breast)</td>
<td>Toca 6</td>
<td>Data updates anticipated 2018 and 2019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Newly diagnosed high grade glioma</td>
<td>Toca 7</td>
<td>Advancing in 2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toca 521</td>
<td>Oncology RRV-Anti-PD-L1</td>
<td></td>
<td>Advancing into IND-enabling studies 2H 2018</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

• Toca 511 & Toca FC
 — Data supports cancer-selectivity, broad applicability, differentiated MOA
 — Favorable safety profile across 127 rHGG patients and encouraging efficacy
 — Ongoing Phase 3 Toca 5 trial scheduled to complete enrollment by end-2018
 — Planning a trial in newly diagnosed HGG
 — Clinical trial ongoing in multiple advanced cancer types
 — Global development including US, EU, China, Korea and Japan

• RRV platform products in preclinical development
 — Toca 521 secretable anti-PD-L1 single chain monoclonal with increased activity
SPECIAL THANKS TO:

OUR CLINICAL INVESTIGATORS

UCLA Tim Cloughesy, Linda Liau, Albert Lai, Phioanh Nghiemphu
UC San Diego Bob Carter, Santosh Kesari, Clarke Chen, David Piccioni
UC San Francisco Manish Aghi, Susan Chang
Henry Ford Hospital Detroit Tom Mikkelsen, Steven Kalkanis, Ian Lee, Tobias Walpert
JFK Brain Tumor Center NJ Joseph Landolfi, Stephan Bloomfield
Cleveland Clinic Foundation Mike Vogelbaum
The Ohio State University James Elder
City of Hope, Duarte CA Jana Portnow
University of Pittsburgh Medical Center Ian Pollack
Methodist Hospital Houston David Baskin
Swedish Neuroscience Institute, Seattle Gregory Foltz
UC Irvine Daniela Bota
University of Miami Jaime Merchan
MD Anderson Cancer Center, Houston Jordi. Rodon
Sarah Cannon Resrach Institute, Denver G. Falchook
UT Health Science Center, Houston Jay-Jiguang Zhu

TOCAGEN STAFF & COLLABORATORS

INCLUDING

Doug Jolly, Asha Das, Harry Gruber, John Wood, Jolene Shorr, Thian Kheoh, Carlos Ibanez, Derek Ostertag, Chingi Chen, Dan Hogan, Bill Accomando, Par Pettersson, Amanda Richter, Dan Mangold, Karen Almos, Joon Park
Nori Kasahara (UM), Aki Inagaki (UM), Kei Hiraoka (U. Hokaido), Masa Takahashi (JNCC), Yuki Kato (consultant)
And the rest of the Tocagen Team
Thank you to all of the patients and families who have supported our work.

Financial support also provided by:
Thank you very much!

ありがとうございます